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Abstract—This paper, that continues a previous research, has as 
primer goal the improvement of a brain computer interface 
(BCI) system that uses a new features extracting method named 
Adaptive Nonlinear Amplitude and Phase Process (ANAPP). The 
ANAPP method models the EEG signals as a combination of five 
a priori “spontaneous cortical oscillations” whose amplitudes and 
phases are established using an adaptive algorithm. While in a 
series of previous researches [1], [2] the amplitude features of the 
model were extensively used, in this research the opportunity of 
using supplementary the phase information within the BCI 
system is analyzed.  In addition, in this paper, the number and 
the type of the input features that feed the classification system 
are optimized using a GA algorithm. The final goals are to obtain 
both a faster BCI system and better classification results. 

Keywords-brain computer interface; genetic algorithm; neural 
network; optimisation; mental task; Adaptive Nonlinear Amplitude 
and Phase Process 

I.  INTRODUCTION 
An EEG-based brain computer interface (BCI) system is a 

device able to acquire, process, interpret and command other 
devices or systems based on the electroencephalographic 
(EEG) signals.  Usually, the classification subsystem, an 
integrant part of any BCI application, uses one or more features 
extracted from the EEG signals in order to discriminate 
different mental tasks reflected within the EEG signals 
dynamics.  

The EEG features, used for mental tasks classification and 
reported in the literature, are of rare encountered diversity. The 
most frequently used features in the BCI systems are: AR 
coefficients [3], [4], [5], [6], AR models with exogenous inputs 
[6], power spectral parameters [8], [7], [9], [10], [11], statistic 
phase synchronization [8], [9], spatial filtering [12], mean 
value of the phase coherence [8], discharge frequency of a 
neuronal group [15], P300 wave [12], [13], [14] etc. 

This paper focuses on the same issue, namely that of 
finding more appropriate EEG features for cognitive tasks 
applications. The results presented in this paper are part of a 
more complex project whose final goal is to design and 
implement an autonomic self-organizing robotic system, 
mentally commanded by an user that gives one of the following 
four associated commands: forth, back, left, right. As the 
system is intended to be an on-line one, in the research 
conducted and reported in this paper the optimization of a 
previous developed BCI system [1], [2] is taken into 
consideration. The BCI system presented in [1], [2] uses in the 

EEG processing stage a new method in order to extract the 
feature vectors; this approach was named Adaptive Nonlinear 
Amplitude and Phase Process (ANAPP) method.   

The ANAPP method models the EEG signals based on a 
combination of five a priori “spontaneous cortical oscillations” 
whose amplitudes and phases are established by an adaptive 
algorithm. These spontaneous cortical oscillations, needed 
within the ANAPP modeling, were previously derived using 
the coherence function calculated for each specific task. The 
resulting parameters obtained from the ANAPP model were 
then used as input data for a multi layer perceptron (MLP) 
artificial neural network (ANN) who finally provided the 
corresponding correct classification class. 

Up to now, in the previous researches [1], [2], we have used 
only the amplitude features as inputs for the ANN in order to 
obtain improved classification performances. Unlike these, the 
present study has two main objectives. The first objective is to 
determine if the phase features, alone or together with the 
amplitude features, can be used to improve the classification 
performances. The second objective is to optimize the number 
of input features (amplitude, phase or both of them), using for 
this a genetic algorithm (GA), in order to obtain: superior 
classification performances, higher ANN generalization 
characteristics and a fast BCI system.     

 

II. MATERIALS AND METHODS 

A. Data Acquisition 
 
The EEG data used in this paper was acquired from four 

subjects during performing five different mental tasks. The 
EEG signals were recorded from 3 pairs of electrodes placed 
on the scalp on the: central (C3, C4), parietal (P3, P4) and 
occipital (O1, O2) positions, respectively. All EEG channels 
were referred to the right mastoid A2 and were sampled at 250 
Hz. Each recording time was 10 s.   

The subjects performed all the tasks without vocalizing and 
with the eyes closed. The tasks were as follows [2]: the 
baseline task (the subject relaxed as much as possible), the 
letter task (the subject mentally composed a letter to a friend), 
the counting task (the subject watched sequentially numbers 
written on an imaginary blackboard), the math task (the 
subject performed a nontrivial multiplication) and the rotation 
task (the subject studied for 30 seconds a 3D object and, with 
the object being removed, he was asked to imaginary rotate it 
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around an axis). Moreover, the subjects performed two 
different trails for each task. 

B. The coherence function 
The coherence function indicates, in the frequency 

domain, the degree of linear correlation between two 
different signals.  A zero value for the coherence function 
means the independence between the two signals while a 
value of 1 means the complete linear dependence. 

The coherence estimate for each pair of signals, x(t) and 
y(t), was computed using the following formula: 
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The auto- and cross-spectra from the equation (1) were 
estimated by averaging over some overlapped sections: 
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In the relation (2) the over bar ‘¯¯’ on FT
x(λ, l) indicates a 

complex conjugate and (x,y) are the pairs (s1, s2) for cross-
spectra, and (s1, s1), respectively (s2, s2) for autospectra; here,  
by s1 and s2 we denoted two different EEG signals, 
recorded from the same electrode position at different 
time moments. In order to obtain the formula for the 
auto- and cross-spectra function we first divided each of 
the two investigated time series into L overlapping 
windows of length T. The x(t) was replaced in our case by 
s1(t) – the first trial for each subject, each task and each EEG 
channel and respectively, by s2(t) – the second trial for the 
same subject, task and channel. To facilitate the consistence 
of the interpretation we calculated the pooled coherence 
estimate [2] based on a statistical test. The entirely 
methodology used to derive the a priori spontaneous 
cortical oscillations is presented in [2]. 

C. Adaptive Nonlinear Amplitude and Phase Process 
 

After determining the spontaneous EEG frequencies based 
on the coherence function, an adaptive amplitude and phase 
model was implemented in order to model the original EEG 
time series.  

The main hypothesis of the ANAPP model is constructed  
on the assumption that the EEG signal can be suitably be 
decomposed into several frequency components (some 
spontaneous oscillations - a priory specified) and their 
nonlinearly coupled frequencies (self-coupling oscillations 
and, respectively, cross-coupling oscillations). More exactly, 
two oscillatory waves (of f1 and f2 frequency – e.g., signals 
generated by two cortical oscillators), passing through a 
nonlinear square system (different neuronal pathways) 

generate two kinds of harmonic frequencies: self-coupling 
harmonics (2·f1 and 2· f2) and cross-coupling harmonics (f1 ± 
f2), respectively.  

Correspondingly, the modeled EEG signal, y[n], was 
assumed to be composed of K (in our case K = 5) different 
oscillations (xj, j=1÷K). In the equations presented in (3) TS is 
the sampling rate, fj is the dominant j-th frequency, φj is its 
corresponding initial phase and a, b, c and d are the amplitude 
parameters of the model. The amplitude and phase parameters 
of the EEG model were then used as input features for the 
classification system.  
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The least mean square (LMS) algorithm was used in order 
to adaptively estimate the model parameters (i.e., the 
amplitudes aj, bj, cij, dij and the phases φ i, φ ij, i, j = 1 ÷ K, i ≠ 
j). For this, the square error, given by: 

e[n]2 = [s[n]-y[n]]2                     (4) 

was used in the definition of the cost function J (i.e., J = 
1/2⋅E{e[n]2}) that should be minimized. In equation (4), s[n] is 
the real EEG signal while y[n] is its corresponding modeled 
signal. 

Applying the LMS relation, in [1], [2] we have obtained the 
following adjusting formulas for the ANAPP amplitude model 
parameters: 
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Regarding the relating phase parameters, after we applied 
Windrow’s LMS relations, we obtained further: 



 
  

Count (1 0 0 0)
Letter    (0 1 0 0)
Math     (0 0 1 0)
Rotate   (0 0 0 1)
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III. RESULTS AND DISCUSSIONS 
In order to compare the obtained results, presented in this 

paper, we focused only on one single subject, namely subject 
2, as in the papers [1] and [2]. The subject 2 was reported in 
the literature as having the greatest classification performances 
in comparison with the other 3 subjects. 

The feature vectors employed at the input of the ANN 
classifier were obtained by concatenating the parameters of 
the ANAPP model calculated for EEG sliding windows of 256 
samples recorded simultaneously from the all six EEG 
channels. The dimension of the feature vectors varied as a 
function of the analysis we made (i.e., only the amplitude 
coefficients were used, the phase coefficients or both 
coefficients types).  All EEG channels were digitally high pass 
filtered with a FIR filter, having the cut off frequency at 20 
Hz. 

For a sliding window of 2250 samples, overlapped by 12 
samples, we finally got 1670 ANN input feature vectors (167 
vectors per each recording * 2 recordings * 5 mental tasks). 
From this input database we have used 80% of data for the 
training set (1336 vectors) and 20% of data for the cross 
validation (CV) set (334 vectors).  

The necessity of digital pre-filtering the EEG signals issued 
from the largely accepted idea that the most important 
frequency peaks (the most part of the EEG signal power) are 
usually situated within the 0 – 20 Hz band, thus making us 
difficult to obtain a reliable ANAPP model for the EEG signal 
(almost all the a priori spontaneous cortical oscillations are 
situated at the frequency components superior to 20 Hz). 
Additionally, in order that the proposed ANAPP model does 
not introduce frequencies within 0 – 20 Hz band or over the 
half of the sampling frequency (Shannon frequency, namely 
125 Hz), we have forced all the learning rates and the initial 
amplitude values to become zero but only for those derived 
frequencies within the already mentioned values intervals.  

In  this  way,  by  removing  the  frequency  components  of   
 

TABLE 1 THE CONFUSION MATRIX FOR THE 4 TASKS CLASSIFICATION CASE 
[1]  

  Assigned classes 
  T2 T3 T4 T5 

T2 79.6% 3.2% 6.3% 10.9% 
T3 2.9% 84.1% 5.7% 7.3% 
T4 6.1% 13.6% 77.3% 3% 

Real 
classes 

T5 14.7% 10.3% 2.9% 72.1% 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.  The classification process 

zero value, the amplitude feature vectors were reduced from 
180 components to 104 components. The same situation 
occurred in the case of phase feature set. 

Further on, using the ANAPP model of the EEG signals, a 
MLP classifier and the methodologies presented in the papers 
[1] and [2], we obtained the results presented in Table 1. In 
order to obtain these results the ANN topology, the learning 
rates and the moment rates were extensively investigated. This 
searching work for the best ANN configuration was done 
based on a human expert strategy and a large number of trails 
having as main objective to obtain the best classification 
performance. The optimal architecture for the MLP ANN – 
based on which we have obtained the best performances –
consisted in one input layer with 104 inputs, one hidden layer 
with 40 processing elements (PEs) and 4 outputs neurons. 
Each of these output neurons corresponded to the 4 mental 
tasks used in the classification process. 

The results presented in Table 1 will be considered, in the 
rest of this paper, as a reference; moreover, having in mind the 
main final goal – that of obtaining a faster system and, finally, 
a real time system – in all analyses and discussions that will 
follow, we will try to improve these performances. In the same 
time, the ANN, based on which we obtained these first results, 
will be considered also as a reference neuronal network. 

A. The EEG phase features 
In a first analysis we wished to test the abilities of the phase 

features only to confine useful information able to obtain 
higher correct classification rates. For this analysis the input 
and the desired data sets were constructed as it is shown in 
Fig. 1. 

The results obtained for the above presented case are given 
in Table 2. In this table, as in the all following tables, the tasks 
are represented as follows: T2 – count, T3 – letter, T4 – math, 
and T5 – rotate. 

 
TABLE 2. THE CONFUSION MATRIX FOR THE 4 TASKS CLASSIFICATION CASE 

USING ONLY THE PHASE FEATURES 
  Assigned classes 
  T2 T3 T4 T5 

T2 35.54% 17.52% 31.35% 15.59% 
T3 20.19% 51.2% 16.27% 12.34% 
T4 18.29% 16.39% 54.79% 10.53% 

Real 
classes 

T5 12.71% 24.94% 15.75% 46.6% 
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One can easily remark that using only the phase features of 
the ANAPP model the resulting classification performances 
are significantly inferior to those considered in this paper as 
reference (see Table 2 versus Table 1). In conclusion, the 
phase parameters of the ANAPP model are able to 
differentiate the four tasks, but the classification performances 
are inferior comparing with the ones based only on the 
amplitude parameters of the ANAPP model. 

In the second analysis we tested the ability of both 
amplitude and phase features to obtain a synergic effect and, 
as a result, to get higher correct classification rates then those 
obtained using only the amplitude features or only the phase 
features. But, in spite of all expectations, the classification 
results proved to be even more inferior then those obtained in 
Table 2. An explanation for this behavior could be, among 
other possible explanations, a technical drawback, namely the 
size of the training set that is in this case quite small.  

The required number of training feature vectors, N, 
necessary to classify correctly a test set with an error of ε can 
be approximately given by the following relation [16]: 

 
ε
WN > . (13) 

In the previous relation W is the number of weights in the 
ANN. In our particular case, considering an ANN with 208 
inputs (104 amplitude features and 104 phase features), a 
number of at least 40 neurons on the hidden layer and 4 
outputs neurons, a number of 8480 weights results. If an error 
of 10% is considered, the minimum number of the training 
feature vectors should then be greater than 84800. But, we 
have only a training set of 1336 vectors. As a result, the size of 
the training data could be a reason for the lower classification 
performances obtained previously. Considering the above 
presented facts and the existing constrains (i.e., the size of the 
data set) a method able to select only those useful features 
(both phase and amplitude) capable to generate superior 
classification rates could be taken further in the consideration. 

B. GA optimization 
In order to solve the problem of the size of the feature 

vectors set a GA was used. The GA method selects from the 
entire feature set only those features (in our analysis these can 
be the amplitude features, the phase features only or both types 
of features), which are important for the classification process 
(i.e., those inputs that confine some special characteristics and 
information that assure the best discrimination characteristics 
between the data classes). 

A chromosome used by the GA approach was composed 
from a series of values. In our case, only two values were 
allowed, namely 0 and 1. The number of values (0 or 1) from a 
chromosome was set equal with the number of elements from 
the feature vector (also equal with the number of inputs for the 
MLP classifier). These inputs were then selected or de-selected 
using the genetic algorithm – a 0 value deselected the 
corresponding input while a value of 1 selected the 
corresponding input. The average cost (square average cost of 
the network's output) of the cross validation set was used as the  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  The evolution of the genetic algorithm for an ANN having as 
inputs the amplitude and the phase features 

fitness criteria for the genetic algorithm. This cost should be 
minimized by the GA. 

Usually, this optimization technique requires that the ANN 
be trained multiple times in order to find the optimal 
combination of inputs that produces the lowest error (e.g. a 
population of 50 chromosomes requires, in each generation, 50 
ANN trainings). From this reason it becomes necessary to find 
– before starting the GA optimization –, an optimal MLP 
(topology, learning rates, moment rates, nonlinearity types, 
etc.) that has optimal convergence characteristics; that is, first, 
the networks have to have a stabile dynamics and, second, the 
ANN has to have a lower convergence time. In this mode, the 
time spent by the ANN is minimized and, as a result, each GA 
generation takes less time. 

Using this approach (namely, the GA optimization of the 
feature vectors size), the previous classification problem we 
had when using both amplitude and phase features can be 
further over passed. 

In Fig. 2 the evolution of the genetic algorithm displaying 
fitness of the best individual (the square average cost on the 
cross-validation set for the best chromosome of each 
generation) is presented. From this figure one can observe the 
ability of the GA algorithm to improve the classification 
performances using for this an optimal set of feature vectors 
continuously selected during the evolution process. The 
associated classification performances obtained at the end of 
the GA evolutions are presented in Table 3. Unfortunately, 
these performances continue to be inferior of the ones 
presented in Table 1.  

Due to the worst classification performances obtained with 
the phase features, in a second step of this last analysis we 
decided to further optimize only the amplitude feature set (i.e., 
the number and the specific amplitude feature selected).  

After an extensive search, we found that an ANN with a 
single hidden  neuronal  layer,  with 23  processing elements on 

 
TABLE 3. THE CONFUSION MATRIX FOR THE 4 TASKS CLASSIFICATION CASE 

AFTER THE GA SELECTED AMPLITUDE AND PHASE FEATURES  
  Assigned classes 
  T2 T3 T4 T5 

T2 55.38% 12.31% 21.54% 10.77% 
T3 10% 74.29% 7.14% 8.57% 
T4 17.19% 9.37% 71.88% 1.56% 

Real 
classes 

T5 10.29% 23.53% 5.88% 60.3% 
 

Fitness of the best individual 

Generations 



  
 
 
 
 
 
 
 
 
 

Figure 3.  The evolution of the genetic algorithm 

the hidden layer, having all moment rates equal to 0.95, using a 
learning rate of 0.35 on the hidden layer and a learning rate of 
0.03 on the output layer, had the best convergence 
characteristics for our specific case. 

The GA was implemented based on a population of 15 
chromosomes, using a roulette selection method, a uniform 
crossover operator and a classical mutation operator. The 
probabilities for crossover and mutation operators were set to 
0.9 and 0.001. Also, we tested different crossover methods 
(one point and two points), as well as different selection 
schemes: rank, tournament, stochastic uniform sampling, and 
stochastic remainder sampling. As a result, for our problem the 
most efficient crossover operator proved to be the uniform one, 
while the most effective selection scheme proved to be the 
roulette. A genetic evolution run until the maximum number of 
generations, one hundred in our case, was reached.   

In Fig. 3 we present the evolution of the genetic algorithm 
displaying fitness of the best individual (the square average 
cost on the cross-validation set for the best chromosome of 
each generation). 

The classification results obtained from the best 
chromosome, on the cross validation set, after the convergence 
of the GA are presented in Table 4.  

If we compare the results presented in Table 4 with the 
reference classification rates, presented in Table 1, we observe 
only a slightly improvement of the classification performances 
obtained for the GA optimization techniques. The sum of the 
diagonal elements from Table 1 is 313.1 (the correct 
classification rates) and 315.05 for Table 4. Based on this 
information, the reference mean classification performance is 
78.275; meanwhile the mean classification performance of all 4 
tasks using the GA optimization techniques is 78.7625. 

The obtained improvement in the classification 
performances seem to be insignificant, and, consequently, 
inconsistent, but this slightly improvements is also sustained by 
a different paradigm. In this second paradigm an artificial 
neural network of only 23 processing elements on the hidden 
layer  was  used  as  compared to the 40 processing elements of 

 
TABLE 4. THE CONFUSION MATRIX FOR THE 4 TASKS CLASSIFICATION CASE 

AFTER THE GA AMPLITUDE FEATURES OPTIMISATION 
  Assigned classes 
  T2 T3 T4 T5 

T2 82.81% 6.25% 4.68% 6.26% 
T3 2.9% 79.71% 7.25% 10.14% 
T4 6.06% 7.58% 86.36% 0% 

Real 
classes 

T5 11.76% 13.24% 8.82% 66.18% 
 

the reference neural network. Another important difference 
comparing to the reference ANN, and which represents, in fact, 
the main advantage of this second used ANN, results directly 
from the implemented GA optimization process. Thus, instead 
of the 104 inputs of the reference ANN a number of only 80 
selected inputs were used.  As a direct result, the classification 
system’s complexity decreased from a number of 4320 weights 
(104 inputs · 40 neurons + 40 neurons · 4 neurons) for the 
reference ANN to only 1932 weights (80 inputs · 23 neurons + 
23 neurons · 4 neurons) for the optimized ANN. Thus, the 
complexity of the new classification system was less then a 
half (55.27%) of the reference ANN. 

The system’s complexity reduction has a number of 
advantages. First, the system is faster due to the decreasing 
number of computation associated with: each weight updating 
(during the backpropagation algorithm) and new class 
association of the input feature vector (in the forward step). 

Second, using the same training data set, the classification 
performances, the generalization abilities of the new ANN, can 
be increased using a smaller number of amplitude feature 
vectors, see relation (13). From the relation (13) it can be 
observed the fact that having the same data set and a smaller 
set of weight (more then a half) the error can be decreased 
correspondingly and the classification rate can be increased.         

IV. CONCLUSSIONS 
From the results presented previously one can remark the 

ability of the GA to optimize the feature data set in order to 
obtain both higher classification rates and a smaller 
complexity of the ANN. By using the GA, the complexity of 
the optimized ANN has been reduced to less then a half – with 
a number of 2388 weights. In this mode, we obtained a faster 
neural network. Using the GA optimization technique we 
made an important step to be closer to the final objective: a 
real time BCI system. 

Regarding the phase parameters of the ANAPP model, one 
can conclude that this type of EEG features does not bring 
new information and discrimination power for the BCI system. 
Two possible explanations for this behavior could be taken 
into account in this case: first, in our analysis the instant value 
of the phase parameter was used instead of the derived form of 
it (which was suggested to care more information) and, 
second, the constrains imposed by the ANAPP model, namely, 
the selection of only five fundamental spectral components 
that removed probably some useful information. 

This research emphasis once again the importance of the 
data training size and confirms the performances of the 
ANAPP model. 
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