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Abstract—This paper, that continues a previous research, has as
primer goal the improvement of a brain computer interface
(BCI) system that uses a new features extracting method named
Adaptive Nonlinear Amplitude and Phase Process (ANAPP). The
ANAPP method models the EEG signals as a combination of five
a priori “spontaneous cortical oscillations” whose amplitudes and
phases are established using an adaptive algorithm. While in a
series of previous researches [1], [2] the amplitude features of the
model were extensively used, in this research the opportunity of
using supplementary the phase information within the BCI
system is analyzed. In addition, in this paper, the number and
the type of the input features that feed the classification system
are optimized using a GA algorithm. The final goals are to obtain
both a faster BCI system and better classification results.
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L INTRODUCTION

An EEG-based brain computer interface (BCI) system is a
device able to acquire, process, interpret and command other
devices or systems based on the electroencephalographic
(EEG) signals. Usually, the classification subsystem, an
integrant part of any BCI application, uses one or more features
extracted from the EEG signals in order to discriminate
different mental tasks reflected within the EEG signals
dynamics.

The EEG features, used for mental tasks classification and
reported in the literature, are of rare encountered diversity. The
most frequently used features in the BCI systems are: AR
coefficients [3], [4], [5], [6], AR models with exogenous inputs
[6], power spectral parameters [8], [7], [9], [10], [11], statistic
phase synchronization [8], [9], spatial filtering [12], mean
value of the phase coherence [8], discharge frequency of a
neuronal group [15], P300 wave [12], [13], [14] etc.

This paper focuses on the same issue, namely that of
finding more appropriate EEG features for cognitive tasks
applications. The results presented in this paper are part of a
more complex project whose final goal is to design and
implement an autonomic self-organizing robotic system,
mentally commanded by an user that gives one of the following
four associated commands: forth, back, left, right. As the
system is intended to be an on-line one, in the research
conducted and reported in this paper the optimization of a
previous developed BCI system [1], [2] is taken into
consideration. The BCI system presented in [1], [2] uses in the
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EEG processing stage a new method in order to extract the
feature vectors; this approach was named Adaptive Nonlinear
Amplitude and Phase Process (ANAPP) method.

The ANAPP method models the EEG signals based on a
combination of five a priori “spontaneous cortical oscillations”
whose amplitudes and phases are established by an adaptive
algorithm. These spontaneous cortical oscillations, needed
within the ANAPP modeling, were previously derived using
the coherence function calculated for each specific task. The
resulting parameters obtained from the ANAPP model were
then used as input data for a multi layer perceptron (MLP)
artificial neural network (ANN) who finally provided the
corresponding correct classification class.

Up to now, in the previous researches [1], [2], we have used
only the amplitude features as inputs for the ANN in order to
obtain improved classification performances. Unlike these, the
present study has two main objectives. The first objective is to
determine if the phase features, alone or together with the
amplitude features, can be used to improve the classification
performances. The second objective is to optimize the number
of input features (amplitude, phase or both of them), using for
this a genetic algorithm (GA), in order to obtain: superior
classification performances, higher ANN generalization
characteristics and a fast BCI system.

II.  MATERIALS AND METHODS

A. Data Acquisition

The EEG data used in this paper was acquired from four
subjects during performing five different mental tasks. The
EEG signals were recorded from 3 pairs of electrodes placed
on the scalp on the: central (C3, C4), parietal (P3, P4) and
occipital (O1, O2) positions, respectively. All EEG channels
were referred to the right mastoid A2 and were sampled at 250
Hz. Each recording time was 10 s.

The subjects performed all the tasks without vocalizing and
with the eyes closed. The tasks were as follows [2]: the
baseline task (the subject relaxed as much as possible), the
letter task (the subject mentally composed a letter to a friend),
the counting task (the subject watched sequentially numbers
written on an imaginary blackboard), the math task (the
subject performed a nontrivial multiplication) and the rotation
task (the subject studied for 30 seconds a 3D object and, with
the object being removed, he was asked to imaginary rotate it



around an axis). Moreover, the subjects performed two

different trails for each task.

B. The coherence function

The coherence function indicates, in the frequency
domain, the degree of linear correlation between two
different signals. A zero value for the coherence function
means the independence between the two signals while a
value of 1 means the complete linear dependence.

The coherence estimate for each pair of signals, x(f) and
¥(t), was computed using the following formula:
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The auto- and cross-spectra from the equation (1) were
estimated by averaging over some overlapped sections:

A 1 L -
N=——NF(A.DF (4.1 2
fo(2) MT; T(ADFE] (A1) 2)

In the relation (2) the over bar <’ on FTX(/L 1) indicates a
complex conjugate and (x,y) are the pairs (s;, s;) for cross-
spectra, and (s;, s;), respectively (s,, s,) for autospectra; here,
by s; and s, we denoted two different EEG signals,
recorded from the same electrode position at different
time moments. In order to obtain the formula for the
auto- and cross-spectra function we first divided each of
the two investigated time series into L overlapping
windows of length 7. The x(f) was replaced in our case by
s1(f) — the first trial for each subject, each task and each EEG
channel and respectively, by s,(f) — the second trial for the
same subject, task and channel. To facilitate the consistence
of the interpretation we calculated the pooled coherence
estimate [2] based on a statistical test. The entirely
methodology used to derive the a priori spontaneous
cortical oscillations is presented in [2].

C. Adaptive Nonlinear Amplitude and Phase Process

After determining the spontaneous EEG frequencies based
on the coherence function, an adaptive amplitude and phase
model was implemented in order to model the original EEG
time series.

The main hypothesis of the ANAPP model is constructed
on the assumption that the EEG signal can be suitably be
decomposed into several frequency components (some
spontaneous oscillations - a priory specified) and their
nonlinearly coupled frequencies (self-coupling oscillations
and, respectively, cross-coupling oscillations). More exactly,
two oscillatory waves (of f; and f, frequency — e.g., signals
generated by two cortical oscillators), passing through a
nonlinear square system (different neuronal pathways)

generate two kinds of harmonic frequencies: self-coupling
harmonics (2-f; and 2- f5) and cross-coupling harmonics (f; £
13), respectively.

Correspondingly, the modeled EEG signal, y[n], was
assumed to be composed of K (in our case K = 5) different
oscillations (x;, j/=1+K). In the equations presented in (3) Ty is
the sampling rate, f; is the dominant j-th frequency, ¢ is its
corresponding initial phase and a, b, ¢ and d are the amplitude
parameters of the model. The amplitude and phase parameters
of the EEG model were then used as input features for the
classification system.
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The least mean square (LMS) algorithm was used in order
to adaptively estimate the model parameters (i.e., the

amplitudes a;, b;, ¢;, d; and the phases @i, @, i,j=1+K,i#
). For this, the square error, given by:
e[n)’ = [stnly[n])’ @)

was used in the definition of the cost function J (i.e., J =
1/2-E{e[n]*}) that should be minimized. In equation (4), s[n] is
the real EEG signal while y[n] is its corresponding modeled
signal.

Applying the LMS relation, in [1], [2] we have obtained the
following adjusting formulas for the ANAPP amplitude model
parameters:
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Regarding the relating phase parameters, after we applied
Windrow’s LMS relations, we obtained further:
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III. RESULTS AND DISCUSSIONS

In order to compare the obtained results, presented in this
paper, we focused only on one single subject, namely subject
2, as in the papers [1] and [2]. The subject 2 was reported in
the literature as having the greatest classification performances
in comparison with the other 3 subjects.

The feature vectors employed at the input of the ANN
classifier were obtained by concatenating the parameters of
the ANAPP model calculated for EEG sliding windows of 256
samples recorded simultaneously from the all six EEG
channels. The dimension of the feature vectors varied as a
function of the analysis we made (i.e., only the amplitude
coefficients were used, the phase coefficients or both
coefficients types). All EEG channels were digitally high pass
filtered with a FIR filter, having the cut off frequency at 20
Hz.

For a sliding window of 2250 samples, overlapped by 12
samples, we finally got 1670 ANN input feature vectors (167
vectors per each recording * 2 recordings * 5 mental tasks).
From this input database we have used 80% of data for the
training set (1336 vectors) and 20% of data for the cross
validation (CV) set (334 vectors).

The necessity of digital pre-filtering the EEG signals issued
from the largely accepted idea that the most important
frequency peaks (the most part of the EEG signal power) are
usually situated within the 0 — 20 Hz band, thus making us
difficult to obtain a reliable ANAPP model for the EEG signal
(almost all the a priori spontaneous cortical oscillations are
situated at the frequency components superior to 20 Hz).
Additionally, in order that the proposed ANAPP model does
not introduce frequencies within 0 — 20 Hz band or over the
half of the sampling frequency (Shannon frequency, namely
125 Hz), we have forced all the learning rates and the initial
amplitude values to become zero but only for those derived
frequencies within the already mentioned values intervals.

In this way, by removing the frequency components of

TABLE 1 THE CONFUSION MATRIX FOR THE 4 TASKS CLASSIFICATION CASE
(1]

Assigned classes

T2 T3 T4 TS
T2 79.6% 3.2% 63% | 10.9%
Real T3 2.9% 84.1% 5.7% 7.3%

classes T4 6.1%
T5 14.7%

13.6% 77.3% 3%
10.3% 2.9% 72.1%

Classifier Classification

Feature space

(neural network) space
ANAPP phase
coefficients
(104 features) Count (1000
computed on the N Letter (0100)
simultaneously Math 0010)
6 EEG recorded Rotate (000 1)
channels

Figure 1. The classification process

zero value, the amplitude feature vectors were reduced from
180 components to 104 components. The same situation
occurred in the case of phase feature set.

Further on, using the ANAPP model of the EEG signals, a
MLP classifier and the methodologies presented in the papers
[1] and [2], we obtained the results presented in Table 1. In
order to obtain these results the ANN topology, the learning
rates and the moment rates were extensively investigated. This
searching work for the best ANN configuration was done
based on a human expert strategy and a large number of trails
having as main objective to obtain the best classification
performance. The optimal architecture for the MLP ANN —
based on which we have obtained the best performances —
consisted in one input layer with 104 inputs, one hidden layer
with 40 processing elements (PEs) and 4 outputs neurons.
Each of these output neurons corresponded to the 4 mental
tasks used in the classification process.

The results presented in Table 1 will be considered, in the
rest of this paper, as a reference; moreover, having in mind the
main final goal — that of obtaining a faster system and, finally,
a real time system — in all analyses and discussions that will
follow, we will try to improve these performances. In the same
time, the ANN, based on which we obtained these first results,
will be considered also as a reference neuronal network.

A. The EEG phase features

In a first analysis we wished to test the abilities of the phase
features only to confine useful information able to obtain
higher correct classification rates. For this analysis the input
and the desired data sets were constructed as it is shown in
Fig. 1.

The results obtained for the above presented case are given
in Table 2. In this table, as in the all following tables, the tasks
are represented as follows: T2 — count, T3 — letter, T4 — math,
and T5 — rotate.

TABLE 2. THE CONFUSION MATRIX FOR THE 4 TASKS CLASSIFICATION CASE
USING ONLY THE PHASE FEATURES

Assigned classes
T2 T3 T4 T5
T2 35.54% | 17.52% | 31.35% | 15.59%
Real T3 20.19% 51.2% 16.27% | 12.34%
classes T4 18.29% | 16.39% | 54.79% | 10.53%
T5 1271% | 24.94% 15.75% 46.6%




One can easily remark that using only the phase features of
the ANAPP model the resulting classification performances
are significantly inferior to those considered in this paper as
reference (see Table 2 versus Table 1). In conclusion, the
phase parameters of the ANAPP model are able to
differentiate the four tasks, but the classification performances
are inferior comparing with the ones based only on the
amplitude parameters of the ANAPP model.

In the second analysis we tested the ability of both
amplitude and phase features to obtain a synergic effect and,
as a result, to get higher correct classification rates then those
obtained using only the amplitude features or only the phase
features. But, in spite of all expectations, the classification
results proved to be even more inferior then those obtained in
Table 2. An explanation for this behavior could be, among
other possible explanations, a technical drawback, namely the
size of the training set that is in this case quite small.

The required number of training feature vectors, N,
necessary to classify correctly a test set with an error of & can
be approximately given by the following relation [16]:

N7 (13)

&

In the previous relation W is the number of weights in the
ANN. In our particular case, considering an ANN with 208
inputs (104 amplitude features and 104 phase features), a
number of at least 40 neurons on the hidden layer and 4
outputs neurons, a number of 8480 weights results. If an error
of 10% is considered, the minimum number of the training
feature vectors should then be greater than 84800. But, we
have only a training set of 1336 vectors. As a result, the size of
the training data could be a reason for the lower classification
performances obtained previously. Considering the above
presented facts and the existing constrains (i.e., the size of the
data set) a method able to select only those useful features
(both phase and amplitude) capable to generate superior
classification rates could be taken further in the consideration.

B.  GA optimization

In order to solve the problem of the size of the feature
vectors set a GA was used. The GA method selects from the
entire feature set only those features (in our analysis these can
be the amplitude features, the phase features only or both types
of features), which are important for the classification process
(i.e., those inputs that confine some special characteristics and
information that assure the best discrimination characteristics
between the data classes).

A chromosome used by the GA approach was composed
from a series of values. In our case, only two values were
allowed, namely 0 and 1. The number of values (0 or 1) from a
chromosome was set equal with the number of elements from
the feature vector (also equal with the number of inputs for the
MLP classifier). These inputs were then selected or de-selected
using the genetic algorithm — a 0 value deselected the
corresponding input while a value of 1 selected the
corresponding input. The average cost (square average cost of
the network's output) of the cross validation set was used as the

Fitness of the best individual
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Figure 2. The evolution of the genetic algorithm for an ANN having as
inputs the amplitude and the phase features

fitness criteria for the genetic algorithm. This cost should be
minimized by the GA.

Usually, this optimization technique requires that the ANN
be trained multiple times in order to find the optimal
combination of inputs that produces the lowest error (e.g. a
population of 50 chromosomes requires, in each generation, 50
ANN trainings). From this reason it becomes necessary to find
— before starting the GA optimization —, an optimal MLP
(topology, learning rates, moment rates, nonlinearity types,
etc.) that has optimal convergence characteristics; that is, first,
the networks have to have a stabile dynamics and, second, the
ANN has to have a lower convergence time. In this mode, the
time spent by the ANN is minimized and, as a result, each GA
generation takes less time.

Using this approach (namely, the GA optimization of the
feature vectors size), the previous classification problem we
had when using both amplitude and phase features can be
further over passed.

In Fig. 2 the evolution of the genetic algorithm displaying
fitness of the best individual (the square average cost on the
cross-validation set for the best chromosome of each
generation) is presented. From this figure one can observe the
ability of the GA algorithm to improve the classification
performances using for this an optimal set of feature vectors
continuously selected during the evolution process. The
associated classification performances obtained at the end of
the GA evolutions are presented in Table 3. Unfortunately,
these performances continue to be inferior of the ones
presented in Table 1.

Due to the worst classification performances obtained with
the phase features, in a second step of this last analysis we
decided to further optimize only the amplitude feature set (i.e.,
the number and the specific amplitude feature selected).

After an extensive search, we found that an ANN with a
single hidden neuronal layer, with 23 processing elements on

TABLE 3. THE CONFUSION MATRIX FOR THE 4 TASKS CLASSIFICATION CASE
AFTER THE GA SELECTED AMPLITUDE AND PHASE FEATURES

Assigned classes
T2 T3 T4 T5
T2 55.38% 12.31% 2154% | 10.77%
Real T3 10% 74.29% | 7.14% 8.57%
classes T4 17.19% 9.37% 71.88% 1.56%
T5 10.29% 23.53% 5.88% 60.3%
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Figure 3. The evolution of the genetic algorithm

the hidden layer, having all moment rates equal to 0.95, using a
learning rate of 0.35 on the hidden layer and a learning rate of
0.03 on the output layer, had the best convergence
characteristics for our specific case.

The GA was implemented based on a population of 15
chromosomes, using a roulette selection method, a uniform
crossover operator and a classical mutation operator. The
probabilities for crossover and mutation operators were set to
0.9 and 0.001. Also, we tested different crossover methods
(one point and two points), as well as different selection
schemes: rank, tournament, stochastic uniform sampling, and
stochastic remainder sampling. As a result, for our problem the
most efficient crossover operator proved to be the uniform one,
while the most effective selection scheme proved to be the
roulette. A genetic evolution run until the maximum number of
generations, one hundred in our case, was reached.

In Fig. 3 we present the evolution of the genetic algorithm
displaying fitness of the best individual (the square average
cost on the cross-validation set for the best chromosome of
each generation).

The classification results obtained from the best
chromosome, on the cross validation set, after the convergence
of the GA are presented in Table 4.

If we compare the results presented in Table 4 with the
reference classification rates, presented in Table 1, we observe
only a slightly improvement of the classification performances
obtained for the GA optimization techniques. The sum of the
diagonal elements from Table 1 is 313.1 (the correct
classification rates) and 315.05 for Table 4. Based on this
information, the reference mean classification performance is
78.275; meanwhile the mean classification performance of all 4
tasks using the GA optimization techniques is 78.7625.

The obtained improvement in the classification
performances seem to be insignificant, and, consequently,
inconsistent, but this slightly improvements is also sustained by
a different paradigm. In this second paradigm an artificial
neural network of only 23 processing elements on the hidden
layer was used as compared to the 40 processing elements of

TABLE 4. THE CONFUSION MATRIX FOR THE 4 TASKS CLASSIFICATION CASE
AFTER THE GA AMPLITUDE FEATURES OPTIMISATION

Assigned classes
T2 T3 T4 T5
T2 82.81% 6.25% 4.68% 6.26%
Real T3 2.9% 79.71% | 7.25% 10.14%
classes T4 6.06% 7.58% 86.36% 0%
T5 11.76% 13.24% 8.82% 66.18%

the reference neural network. Another important difference
comparing to the reference ANN, and which represents, in fact,
the main advantage of this second used ANN, results directly
from the implemented GA optimization process. Thus, instead
of the 104 inputs of the reference ANN a number of only 80
selected inputs were used. As a direct result, the classification
system’s complexity decreased from a number of 4320 weights
(104 inputs - 40 neurons + 40 neurons - 4 neurons) for the
reference ANN to only 1932 weights (80 inputs - 23 neurons +
23 neurons - 4 neurons) for the optimized ANN. Thus, the
complexity of the new classification system was less then a
half (55.27%) of the reference ANN.

The system’s complexity reduction has a number of
advantages. First, the system is faster due to the decreasing
number of computation associated with: each weight updating
(during the backpropagation algorithm) and new class
association of the input feature vector (in the forward step).

Second, using the same training data set, the classification
performances, the generalization abilities of the new ANN, can
be increased using a smaller number of amplitude feature
vectors, see relation (13). From the relation (13) it can be
observed the fact that having the same data set and a smaller
set of weight (more then a half) the error can be decreased
correspondingly and the classification rate can be increased.

IV. CONCLUSSIONS

From the results presented previously one can remark the
ability of the GA to optimize the feature data set in order to
obtain both higher classification rates and a smaller
complexity of the ANN. By using the GA, the complexity of
the optimized ANN has been reduced to less then a half — with
a number of 2388 weights. In this mode, we obtained a faster
neural network. Using the GA optimization technique we
made an important step to be closer to the final objective: a
real time BCI system.

Regarding the phase parameters of the ANAPP model, one
can conclude that this type of EEG features does not bring
new information and discrimination power for the BCI system.
Two possible explanations for this behavior could be taken
into account in this case: first, in our analysis the instant value
of the phase parameter was used instead of the derived form of
it (which was suggested to care more information) and,
second, the constrains imposed by the ANAPP model, namely,
the selection of only five fundamental spectral components
that removed probably some useful information.

This research emphasis once again the importance of the
data training size and confirms the performances of the
ANAPP model.
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